Министерство науки и высшего образования Российской Федерации Ярославский государственный университет им. П. Г. Демидова

Д. В. Глазков

А. А. Кащенко

В. В. Литвинов

ПРАКТИКУМ ПО КРАТНЫМ ИНТЕГРАЛАМ

Практикум

ЯРОСЛАВЛЬ ЯРГУ 2021 УДК 517.37 (076.5) ВБК В161.12я73 Г 52

Рекомендовано

Редакционно-издательским советом университета в качестве учебного издания. План 2021 года

Рецензент

кафедра математического анализа Ярославского государственного университета им. П. Г. Демидова

Глазков, Дмитрий Владимирович.

Г 52 Практикум по кратным интегралам : практикум / Д. В. Глазков, А. А. Кащенко, В. В. Литвинов ; Яросл. гос. ун-т им. П. Г. Демидова. — Ярославль : ЯрГУ, 2021. — 44 с.

Рассматривается тематика, связанная с кратными интегралами. Приведены необходимые теоретические сведения и на примерах показаны способы вычисления кратных интегралов. Предложены задачи для самостоятельного решения.

Практикум предназначен для студентов математического факультета очной формы обучения, проходящих подготовку по направлениям 01.03.02 (01.04.02) Прикладная математика и информатика; 02.03.01 (02.04.01) Математика и компьютерные науки; 10.03.01 (10.04.01) Информационная безопасность; 10.05.01 Компьютерная безопасность.

УДК 517.37 (076.5) ББК В161.12я73

©ЯрГУ, 2021

Оглавление

B	ведение	4
1.	Определение и примеры	5
2.	Замена переменных в двойном интеграле	11
3.	Площадь поверхности	21
4.	Тройные интегралы	26
5.	Замена переменных в тройном интеграле 5.1. Цилиндрические координаты	32 34 37
Литература		41

Введение

Тематика, связанная с кратными интегралами, является важной составной частью курсов, посвященных непрерывной математике. Однако в связи с сокращением часов, которые отводятся для изучения математического анализа, данную тему не всегда удается рассмотреть в достаточном объеме. В этой ситуации представляется целесообразным на лекциях и практических занятиях разобрать только интегралы, которые используются в других курсах, а часть материалов предложить для самостоятельного изучения и выполнения индивидуальных расчетно-графических работ студентам направлений подготовки прикладная математика и информатика, математика и компьютерные науки, информационная безопасность, а также специальности компьютерная безопасность.

Цель практикума – помочь студентам в самостоятельном ознакомлении с приемами вычисления кратных интегралов.

Авторы благодарят магистрантов направления прикладная математика и информатика математического факультета ЯрГУ за содействие в работе над практикумом.

1. Определение и примеры

Пусть множество G измеримо по Жордану в пространстве ${f R}^m$. Через d(G) обозначим $\partial uamemp$ множества G:

$$d(G) = \sup_{x,y \in G} \rho(x,y),$$

где $\rho(x,y)$ – расстояние между элементами x и y.

Измеримые по Жордану множества G_1, \ldots, G_n называются разбиением G, если

$$G_i \bigcap G_k = \emptyset$$
 при $i \neq k$ и $\bigcup_{i=1}^n G_i = G$.

Mелкость разбиения T определяется как

$$\ell(T) = \max_{1 \le i \le n} d(G_i).$$

Kратным интегралом Pимана от ограниченной функции f(x) по множеству G называется

$$\int_{G} f(x) dx = \lim_{\ell(T) \to 0} \sum_{i=1}^{n} f(\xi_i) \mu(G_i),$$

где $\xi_i \in G_i$.

Критерий интегрируемости

Ограниченная функция f(x) интегрируема на измеримом по Жордану множестве $G \subset \mathbf{R}^m$ тогда и только тогда, когда разность верхней и нижней сумм Дарбу

$$S_T - s_T \to 0$$
 при $\ell(T) \to 0$.

Область G называется элементарной (правильной) относительно оси y, если

$$G = \{(x, y) : \varphi(x) \le y \le \psi(x), a \le x \le b\},\$$

где $\varphi(x), \psi(x)$ непрерывны на $[a,b], \varphi(x) \leq \psi(x)$ на этом отрезке. В этом случае двойной интеграл по области G можно свести к повторному интегралу:

$$\iint_{G} f(x,y) dxdy = \int_{a}^{b} dx \int_{\varphi(x)}^{\psi(x)} f(x,y) dy = I_{1}.$$

Если G элементарна и относительно оси x, то есть

$$G = \{(x, y) : \alpha(y) \le x \le \beta(y), c \le y \le d\},\$$

где $\alpha(y),\beta(y)$ непрерывны на $[c,d],\ \alpha(y)\leq\beta(y)$ на отрезке [c,d], тогда

$$\iint_{G} f(x,y) dxdy = \int_{c}^{d} dy \int_{\alpha(y)}^{\beta(y)} f(x,y) dx = I_{2},$$

причем $I_1 = I_2$.

Пример 1. Расставить пределы интегрирования, сводя двойной интеграл

$$\iint\limits_{Q} f(x,y) \, dx dy$$

к повторному, если функция f(x,y) интегрируема в квадрате

$$Q = \{(x,y) : -1 + |x| \le y \le 1 - |x|, -1 \le x \le 1\} =$$

$$= \{(x,y) : -1 + |y| \le x \le 1 - |y|, -1 \le y \le 1\},$$

изображенном на рис. (1).

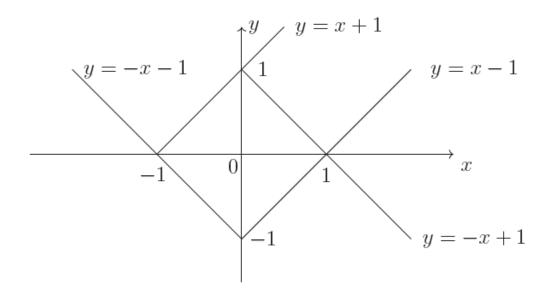


Рис. 1. Квадрат Q – область интегрирования в примере 1

Тогда

$$\iint_{Q} f(x,y) \, dx dy = \int_{Q} \int_{-1+|x|}^{1-|x|} f(x,y) \, dy = \int_{-1}^{1} \int_{-1+|y|}^{1-|y|} f(x,y) \, dx$$

и, раскрывая модули,

$$\iint_{Q} f(x,y) \, dx dy =$$

$$= \int_{-1}^{0} dx \int_{-1-x}^{1+x} f(x,y) \, dy + \int_{0}^{1} dx \int_{-1+x}^{1-x} f(x,y) \, dy =$$

$$= \int_{-1}^{0} dy \int_{-1-y}^{1+y} f(x,y) \, dx + \int_{0}^{1} dy \int_{-1+y}^{1-y} f(x,y) \, dx.$$

Пример 2. Расставить пределы интегрирования в том и другом порядке:

$$\iint\limits_{Q} f(x,y) \, dx dy, \qquad Q = \{(x,y) : x^2 + y^2 \le 25, \ 3x \le 4|y|\}.$$

Область интегрирования представлена на рис. (2).

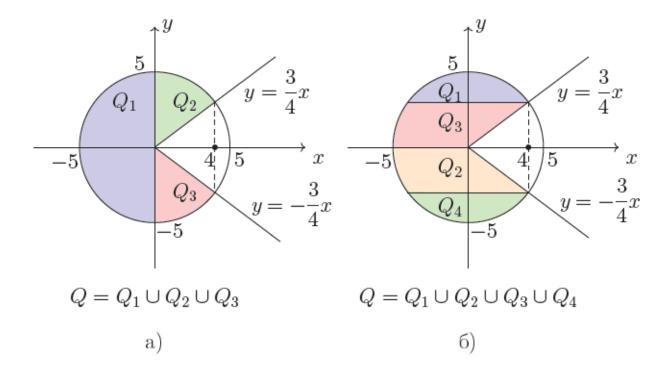


Рис. 2. Два способа разбиения области интегрирования в примере 2

a)
$$\iint_{Q} f(x,y) dxdy = \int_{-5}^{0} dx \int_{-\sqrt{25-x^2}}^{\sqrt{25-x^2}} f(x,y) dy + \int_{0}^{4} dx \int_{3x/4}^{\sqrt{25-x^2}} f(x,y) dy + \int_{0}^{4} dx \int_{-\sqrt{25-x^2}}^{-3x/4} f(x,y) dy.$$

b)
$$\iint_{Q} f(x,y) dxdy =$$

$$= \int_{-5}^{-3} dy \int_{-\sqrt{25-y^2}}^{\sqrt{25-y^2}} f(x,y) dx + \int_{-3}^{0} dy \int_{-\sqrt{25-y^2}}^{-4y/3} f(x,y) dx +$$

$$+ \int_{0}^{3} dy \int_{-\sqrt{25-y^2}}^{4y/3} f(x,y) dx + \int_{3}^{5} dy \int_{-\sqrt{25-y^2}}^{\sqrt{25-y^2}} f(x,y) dx.$$

Пример 3. Вычислить

$$\iint_{C} \frac{dxdy}{\sqrt{2a-x}},$$

$$G = \{(x,y) : (x-a)^2 + (y-a)^2 \ge a^2, \ 0 \le x \le a, \ 0 \le y \le a\}.$$

Область интегрирования ограничена дугой окружности к осям координат, как показано на рис. (3). Уравнение дуги BA имеет вид:

$$y = a - \sqrt{2ax - x^2}, \qquad 0 \le x \le a.$$

$$\iint_{G} \frac{dxdy}{\sqrt{2a-x}} = \int_{0}^{a} \frac{dx}{\sqrt{2a-x}} \int_{0}^{a-\sqrt{2ax-x^{2}}} dy =$$

$$= \int_{0}^{a} \frac{a-\sqrt{2ax-x^{2}}}{\sqrt{2a-x}} dx = -2a\sqrt{2a-x} \Big|_{0}^{a} - \int_{0}^{a} \sqrt{x} dx =$$

$$= -2a\sqrt{a} + (2a)^{3/2} - \frac{2}{3}x^{3/2} \Big|_{0}^{a} = 2a\sqrt{a} \left(\sqrt{2} - \frac{4}{3}\right).$$

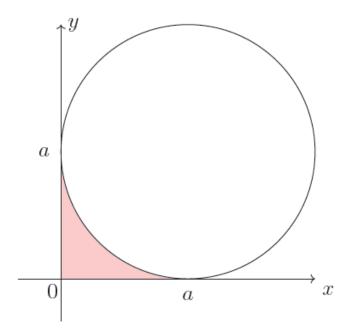


Рис. 3. G – область интегрирования в примере 3

Задачи

- **1.1.** В интеграле $\iint_G f(x,y) \, dx dy$ расставить пределы интегрирования в том и другом порядке, если область G треугольник ABC с вершинами $A(0,2);\ B(-1,1);\ C(3,2).$
- **1.2.** В интеграле $\iint_G f(x,y) \, dx dy$ расставить пределы интегрирования в том и другом порядке, если область G четырехугольник ABCD с вершинами A(0,-1); B(2,-2); C(3,2); D(1,5).
- **1.3.** В интеграле $\iint_G f(x,y) \, dx dy$ расставить пределы интегрирования в том и другом порядке, если область G образована пересечением линий $y=x,\, xy=1,\, y=3.$

- **1.4.** В интеграле $\iint_G f(x,y) \, dx dy$ расставить пределы интегрирования в том и другом порядке, если область G образована пересечением линий $y=x^2-2x, \ y=x+1.$
- **1.5.** В повторном интеграле $\int\limits_0^8 dx \int\limits_{\sqrt{8x-x^2}}^{4\sqrt{x}} f(x,y)\,dy$ изменить порядок интегрирования.
- **1.6.** В повторном интеграле $\int\limits_0^1 dx \int\limits_x^{\sqrt{x}} f(x,y)\,dy$ изменить порядок интегрирования.
- **1.7.** Вычислить двойной интеграл $\iint_G \cos^2 x \, dx dy$ по области G, ограниченной линиями y=0 и $y=\cos x$ при условии $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
- **1.8.** Вычислить двойной интеграл $\iint_G (x^2 + 4yx) \, dx dy$ по области G, ограниченной линиями y = 2x, 2y = x и y = 2.
- **1.9.** Вычислить двойной интеграл $\iint_G \frac{1}{(2x+y)^2} \, dx dy$ по области G, ограниченной линиями $x+y=7, \ x=1$ и y=3.

2. Замена переменных в двойном интеграле

Пусть функции x=x(u,v) и y=y(u,v) осуществляют взаимно однозначное отображение области Q' плоскости O'uv на область Q плоскости Oxy, имеют в Q' непрерывные частные производные 1-го порядка и отличный от нуля якобиан

(определитель матрицы из частных производных):

$$J = J(u, v) = \begin{vmatrix} x'_u & x'_v \\ y'_u & y'_v \end{vmatrix} \neq 0.$$

Тогда при условии существования двойного интеграла $\iint\limits_{O} f(x,y) \, dx dy$ верна формула замены переменных:

$$\iint\limits_{Q} f(x,y)\,dxdy = \iint\limits_{Q'} f(x(u,v),\ y(u,v))\ |J(u,v)|\,dudv.$$

Замечание. Иногда при решении задач бывает удобнее вычислить якобиан J'(x,y) обратного отображения u=u(x,y), v=v(x,y):

$$J'(x,y) = \left| \begin{array}{cc} u'_x & u'_y \\ v'_x & v'_y \end{array} \right|.$$

Якобианы прямого и обратного отображений связаны формулой $J'(x,y)=rac{1}{J(u,v)}.$

Замена переменных в двойном интеграле приводит как к изменению подынтегрального выражения, так и к изменению множества, по которому берется интеграл.

Наиболее простым является случай, когда в качестве границ области Q, по которой берется интеграл, выступают линии уровня гладких функций: $\varphi_1(x,y)$ и $\varphi_2(x,y)$, т. е.

$$Q = \{(x, y) : a \le \varphi_1(x, y) \le b, \ c \le \varphi_2(x, y) \le d\},\$$

тогда образ Q в координатах (u,v) имеет вид

$$Q' = \{(u, v) : a \le u \le b, \ c \le v \le d\}.$$

Пример 4. Вычислить интеграл

$$\iint\limits_{Q} (x^2 + y^2) \, dx dy,$$

$$Q = \{(x,y) : 1 \le xy \le 2, \ 0 \le x \le 2y \le 4x\}.$$

Область интегрирования показана на рис. (4). Заметим, что при вычислении кратных интегралов всегда полезно сделать рисунок области.

Введем новые переменные:

$$\begin{cases} u = xy, & 1 \le u \le 2, \\ v = \frac{y}{x}, & \frac{1}{2} \le v \le 2. \end{cases}$$

Выразим старые переменные через новые:

$$\begin{cases} x = \sqrt{\frac{u}{v}}, \\ y = \sqrt{u \cdot v}. \end{cases}$$

$$Q' = \{(u, v) : 1 \le u \le 2, \ \frac{1}{2} \le v \le 2\}.$$

Якобиан J:

$$\begin{vmatrix} x'_{u} & x'_{v} \\ y'_{u} & y'_{v} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} \frac{1}{\sqrt{uv}} & -\frac{1}{2} \sqrt{\frac{u}{v^{3}}} \\ \frac{1}{2} \sqrt{\frac{v}{u}} & \frac{1}{2} \sqrt{\frac{u}{v}} \end{vmatrix} = \frac{1}{2v} \neq 0, \quad (u, v) \in Q'.$$

$$\iint_{Q} (x^{2} + y^{2}) \, dx dy = \iint_{Q'} \left(\frac{u}{v} + uv \right) \frac{1}{2v} \, du dv =$$

$$= \frac{1}{2} \int_{1}^{2} u \, du \int_{1/2}^{2} \left(\frac{1}{v^{2}} + 1 \right) dv = \frac{1}{2} \int_{1}^{2} \left(\frac{3}{2} + \frac{3}{2} \right) u \, du = \frac{9}{4}.$$

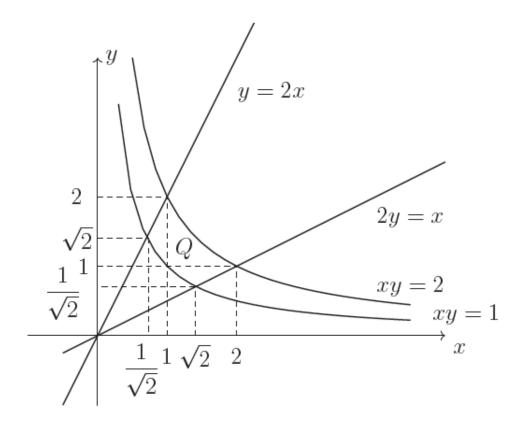


Рис. 4. Q – область интегрирования в примере 4

Пример 5. Вычислить

$$\iint\limits_{O} (x^3y + xy^3) \, dx dy,$$

где

$$Q = \{(x, y) : x \ge 0, y \ge 0, 4x^2 - 3y^2 \le 4, 4y^2 - 3x^2 \le 4\}.$$

Область интегрирования представлена на рис. (5).

Выполним следующую замену переменных:

$$\begin{cases} u = 4x^2 - 3y^2, \\ v = 4y^2 - 3x^2. \end{cases}$$

Очевидно $u \le 4, \ v \le 4$ из условий задачи. При $x \ge 0, \ y \ge 0$ существует однозначная обратная замена:

$$\begin{cases} x = \sqrt{\frac{4u + 3v}{7}}, \\ y = \sqrt{\frac{3u + 4v}{7}}. \end{cases}$$

Отсюда следует, что

$$\begin{cases} 3u + 4v \ge 0, \\ 4u + 3v \ge 0. \end{cases}$$

Таким образом, множество Q, изображенное на рис. (5), переходит в показанное на рис. (6) множество

$$Q_1 = \{(u, v) : 4u + 3v \ge 0, \ 3u + 4v \ge 0, \ u \le 4, \ v \le 4\}.$$

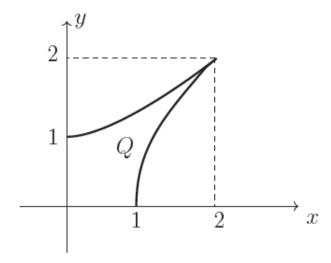


Рис. 5. Q – исходная область интегрирования в примере 5

Посчитаем якобиан обратного отображения J':

$$J' = \begin{vmatrix} 8x & -6y \\ -6x & 8y \end{vmatrix} = 28xy.$$

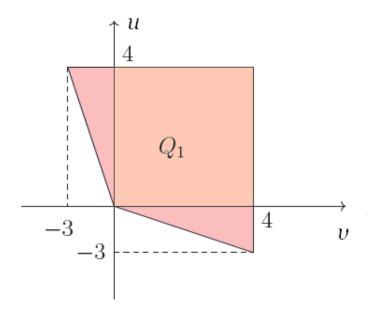


Рис. 6. Q_1 – область интегрирования в новых переменных в примере 5

В силу того что он обращается в ноль при x=0 или y=0, в качестве Q_1 возьмем

$$Q_1' = \{(u, v) : u < 4, \ v < 4, \ 4u + 3v > 0, \ 3u + 4v > 0\}.$$

Тогда

$$\iint_{Q_1'} (u+v) \, du \, dv = \iint_{Q} (4x^2 - 3y^2 + 4y^2 - 3x^2) \, 28xy \, dx \, dy =$$

$$= 28 \iint_{Q} (x^3y + xy^3) \, dx \, dy.$$

Следовательно,

$$\iint\limits_{Q} (x^3y + xy^3) \, dx \, dy = \frac{1}{28} \iint\limits_{Q'} (u + v) \, du \, dv =$$

$$= \frac{1}{28} \int\limits_{-3}^{0} du \int\limits_{-\frac{4u}{3}}^{4} (u + v) \, dv + \frac{1}{28} \int\limits_{0}^{4} du \int\limits_{-\frac{3u}{4}}^{4} (u + v) \, dv =$$

$$= \frac{1}{28} \int\limits_{-3}^{0} \left[u \left(4 + \frac{4}{3}u \right) + 8 - \frac{8}{9}u^2 \right] du +$$

$$+ \frac{1}{28} \int\limits_{0}^{4} \left[u \left(4 + \frac{3}{4}u \right) + 8 - \frac{9}{32}u^2 \right] du =$$

$$= \frac{1}{28} \int\limits_{-3}^{4} (4u + 8) \, du + \frac{1}{28} \int\limits_{-3}^{0} \frac{4}{9} \, u^2 \, du + \frac{1}{28} \int\limits_{0}^{4} \, u^2 \, du \cdot \frac{15}{32} = 3.$$

Обобщенными полярными координатами называется пара чисел (r, φ) , которые связаны с декартовыми координатами формулами

$$x = a r \cos^{\alpha} \varphi,$$
 $y = b r \sin^{\alpha} \varphi,$
 $r \ge 0,$ $0 \le \varphi \le 2\pi.$

Переход к обобщенным полярным координатам делается в основном тогда, когда уравнение кривой, ограничивающей область интегрирования Q, в новых переменных становится существенно более простым.

Пример 6. Вычислить интеграл

$$\iint\limits_{G} \left(\frac{x}{2} + \frac{y}{5}\right)^2 dx \, dy,$$

$$G$$
 ограничена кривой $\left(\frac{x}{2}+\frac{y}{5}\right)^4=\frac{x^2}{9}+y^2,\ x\geq 0,\ y\geq 0.$ Положим
$$\begin{cases} x=2r\cos^2\varphi,\\ y=5r\sin^2\varphi, \end{cases}$$

тогда уравнение кривой : $r^2 = \frac{4}{9}\cos^4\varphi + 25\sin^4\varphi = z^2(\varphi)$. Якобиан отображения $J\left(x,y\right) \longrightarrow (r,\varphi)$

$$J = \alpha a b r \cos^{\alpha - 1} \varphi \sin^{\alpha - 1} \varphi = 2 \cdot 2 \cdot 5 r \cos \varphi \sin \varphi.$$

$$\iint_{G} \left(\frac{x}{2} + \frac{y}{5}\right)^{2} dx \, dy = \int_{0}^{\pi/2} 2 \cdot 2 \cdot 5 \, d\varphi \int_{0}^{z(\varphi)} r^{3} \cos \varphi \sin \varphi \, dr =$$

$$= 5 \int_{0}^{\pi/2} \left(\frac{4}{9} \cos^{4} \varphi + 25 \sin^{4} \varphi\right)^{2} \cos \varphi \sin \varphi \, d\varphi =$$

$$= \frac{80}{81} \int_{0}^{\pi/2} \cos^{9} \varphi \sin \varphi \, d\varphi + \frac{1000}{9} \int_{0}^{\pi/2} \cos^{5} \varphi \sin^{5} \varphi \, d\varphi +$$

$$+ 3125 \int_{0}^{\pi/2} \sin^{9} \varphi \cos \varphi \, d\varphi = \frac{8}{81} + \frac{50}{27} + \frac{625}{2} = \frac{50941}{162}.$$

$$\frac{1000}{9} \int_{0}^{\pi/2} \cos^{5} \varphi \sin^{5} \varphi \, d\varphi = \frac{500}{9} \int_{0}^{1} (1 - t)^{2} t^{2} \, dt = \frac{500}{9} \cdot \frac{2 \cdot 2}{5!},$$

$$t = \sin^{2} \varphi, \qquad dt = 2 \sin \varphi \cos \varphi \, d\varphi.$$

Пример 7. Вычислить

$$\iint_C \left[1 - \left(\frac{x}{a}\right)^{3/2} - \left(\frac{y}{b}\right)^3 \right] dx dy,$$

$$G = \left\{ (x, y) : x \ge 0, \ y \ge 0, \ \left(\frac{x}{a}\right)^{3/2} + \left(\frac{y}{b}\right)^3 \le 1 \right\}.$$

Сделаем замену

$$x = au^{2/3}, y = bv^{1/3},$$

$$G_1 = \{(u, v) : u \ge 0, v \ge 0, u + v \le 1\}.$$

Якобиан отображения

$$(x,y) \longrightarrow (u,v), \qquad J = \frac{2ab}{9} \cdot u^{-1/3} \cdot v^{-2/3},$$

тогда

$$\iint_{G} \left[1 - \left(\frac{x}{a} \right)^{3/2} - \left(\frac{y}{b} \right)^{3} \right] dx \, dy =$$

$$= \iint_{G_{1}} \frac{2ab}{9} \cdot (1 - u - v) \cdot u^{-1/3} \cdot v^{-2/3} \, du \, dv =$$

$$= \frac{2ab}{9} \int_{0}^{1} u^{-1/3} \, du \int_{0}^{1-u} (1 - u - v) v^{-2/3} \, dv.$$

Поскольку

$$\int_{0}^{1-u} (1-u-v)v^{-2/3} dv = \frac{9}{4} (1-u)^{4/3},$$

TO

$$\frac{2}{9}ab \int_{0}^{1} \frac{9}{4} (1-u)^{4/3} u^{-1/3} du = \frac{ab}{2} \cdot \frac{1}{2} \cdot \frac{4}{3} \cdot \frac{1}{3} \cdot \Gamma\left(\frac{1}{3}\right) \cdot \Gamma\left(\frac{2}{3}\right) = \frac{2\pi\sqrt{3}}{27} ab.$$

Напомним:

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}.$$

Задачи

- **2.1.** При какой замене переменных криволинейный четырехугольник, ограниченный кривыми $y = 2\sqrt{x}, \ y = 3\sqrt{x},$ $xy = 1, \ xy = 5,$ перейдет в прямоугольник, стороны которого параллельны осям координат?
- **2.2.** Переходя к полярным координатам, вычислить повторный интеграл $\int\limits_0^2 dx \int\limits_{\sqrt{2x-x^2}}^{\sqrt{4-x^2}} \sqrt{4-x^2-y^2}\,dy.$
- **2.3.** Переходя к полярным координатам, вычислить двойной интеграл $\iint_G (x^2+y^2)\,dxdy, \text{ если область } G \text{ ограничена}$ кривыми $(x^2+y^2)^2=a^2(x^2-y^2),\,y=0\;(x>0,\,y>0).$
- **2.4.** Переходя к полярным координатам, вычислить двойной интеграл $\iint_G \sin \sqrt{x^2 + y^2} \, dx dy$, если область G задана неравенствами $x^2 + y^2 \le a^2, \, x \ge 0, \, y \ge 0$.
- **2.5.** Произведя подходящую замену переменных, вычислить двойной интеграл $\iint_G \arctan \frac{y}{x} \, dx dy$, если область G ограничена кривыми $x^2 + y^2 = 1$, $x^2 + y^2 = 4$, $y = \frac{x}{\sqrt{3}}$, y = x.
- **2.6.** Произведя подходящую замену переменных, вычислить двойной интеграл $\iint_G (x+y^2) \, dx dy$, если область G параллелограмм со сторонами y=2x-2, y=2x+3, y=-3x-2, y=-3x+5.

- **2.7.** Произведя подходящую замену переменных, вычислить двойной интеграл $\iint_G (10-3x-3y) \, dx dy,$ если область G ограничена окружностью $x^2+y^2=4x$.
- **2.8.** Переходя к новым переменным, вычислить двойной интеграл $\iint_G (x+y) \, dx dy$, если область G ограничена линиями $x+y=1, \ x+y=5, \ 3x=y^2.$
- **2.9.** Произведя подходящую замену переменных, вычислить двойной интеграл $\iint_G \frac{y}{x^2} \, dx dy$, если область G ограничена кривыми $y^2=x,\,y^2=9x,\,xy=1,\,xy=3.$

3. Площадь поверхности

Пусть гладкая поверхность z задана в явном виде функцией $z=f(x,y),\ (x,y)\in D,$ тогда ее площадь выражается интегралом

$$S = \iint_{D} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} \, dx \, dy.$$

Если поверхность задана параметрически, т. е. $(u, v) \in \Omega$,

$$\rho = \vec{\rho}(u, v) = \begin{pmatrix} x(u, v) \\ y(u, v) \\ z(u, v) \end{pmatrix},$$

 Ω – измеримая по Жордану область, а компоненты $\vec{\rho}(u,v)$ непрерывно дифференцируемы в Ω , тогда

$$S = \iint\limits_{\Omega} \sqrt{EG - F^2} \, du \, dv,$$

где $E=(\rho'_u,\rho'_u), \quad G=(\rho'_v,\rho'_v), \quad F=(\rho'_u,\rho'_v),$ т. е. величины E,G,F выражаются через скалярные произведения, где множители получаются покомпонентным дифференцированием $\vec{\rho}(u,v)$.

Пример 8. Найти площадь поверхности, вырезаемой цилиндром $x^2 + y^2 = 2x$ из конуса $x^2 + y^2 - z^2 = 0, \ z \ge 0.$

Выразим $z=\sqrt{x^2+y^2}$, тогда

$$S = \iint_{D} \sqrt{1 + \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} \, dx dy =$$

$$= \sqrt{2} \iint_{D} dx dy = \sqrt{2} \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{2\cos\varphi} r \, dr =$$

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi, \end{cases}$$

 $x^2+y^2=2x$ в полярной системе $r^2=2r\cos\varphi$, т. е. $r=2\cos\varphi$.

$$= 2\sqrt{2} \int_{0}^{\pi/2} \frac{1}{2} r^{2} \Big|_{0}^{2\cos\varphi} d\varphi = 2\sqrt{2} \cdot \frac{1}{2} \int_{0}^{\pi/2} 4\cos^{2}\varphi \,d\varphi =$$
$$= 2\sqrt{2} \int_{0}^{\pi/2} (1 + \cos 2\varphi) \,d\varphi = 2\sqrt{2} \cdot \frac{\pi}{2} = \pi\sqrt{2}.$$

Пример 9. Найти площадь части поверхности тора

$$\rho = \vec{\rho}(\varphi, \theta) = \Big((b + a\cos\theta)\cos\varphi, (b + a\cos\theta)\sin\varphi, a\sin\theta \Big),$$
$$0 < a \le b, \qquad \varphi_1 \le \varphi \le \varphi_2, \qquad \theta_1 \le \theta \le \theta_2.$$

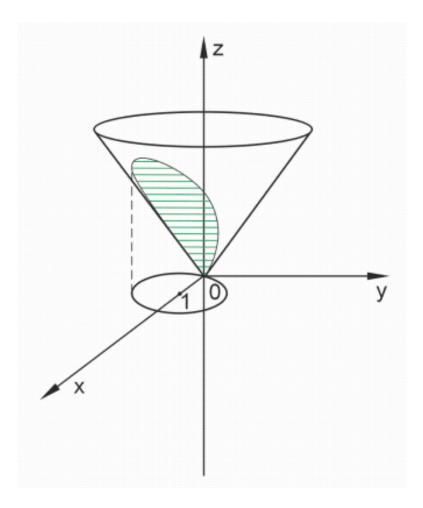


Рис. 7. Часть поверхности конуса, вырезаемая цилиндром, из примера 8

Поскольку поверхность задана параметрически, вычислим сначала необходимые вспомогательные величины:

$$\rho_{\varphi}' = \begin{pmatrix} -(b + a\cos\theta)\sin\varphi\\ (b + a\cos\theta)\cos\varphi\\ 0 \end{pmatrix}, \qquad \rho_{\theta}' = \begin{pmatrix} -a\sin\theta\cos\varphi\\ -a\sin\theta\sin\varphi\\ a\cos\theta \end{pmatrix};$$

$$E = (\rho_{\varphi}', \rho_{\varphi}') = (b + a\cos\theta)^2,$$

$$G = (\rho'_{\theta}, \rho'_{\theta}) = a^2, \qquad F = (\rho'_{\varphi}, \rho'_{\theta}) = 0.$$

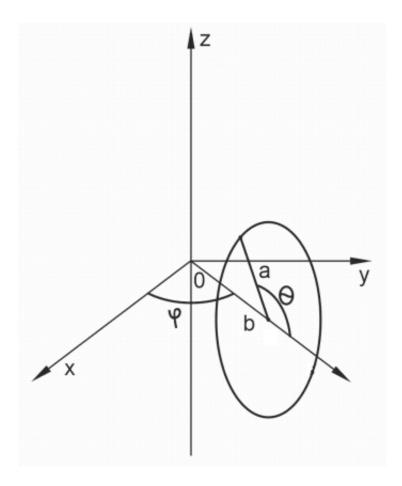


Рис. 8. Иллюстрация параметризации тора из примера 9

Тогда
$$\sqrt{EG - F^2} = a(b + a\cos\theta),$$

$$S = \iint_{\Omega} a(b + a\cos\theta) d\theta d\varphi = a \int_{\varphi_1}^{\varphi_2} d\varphi \int_{\theta_1}^{\theta_2} (b + a\cos\theta) d\theta =$$
$$= a(\varphi_2 - \varphi_1) [b(\theta_2 - \theta_1) + a(\sin\theta_2 - \sin\theta_1)].$$

Площадь всей поверхности тора равна

$$S = ab \cdot 2\pi \cdot 2\pi = 4ab\pi^2.$$

Задачи

3.1. Вычислить площадь части сферы $x^2 + y^2 + z^2 = 9$, расположенной внутри цилиндра $x^2 + y^2 = 1$, при условии $z \ge 0$.

- **3.2.** Вычислить площадь части поверхности конуса $z = a\sqrt{x^2 + y^2}$, расположенной внутри цилиндра $x^2 + y^2 + 2ay = 0$, при условии a > 0 ($z \ge 0$).
- **3.3.** Вычислить площадь части поверхности эллиптического параболоида $z = x^2 + y^2$ при условии $0 < a \le z \le b$.
- **3.4.** Вычислить площадь части поверхности bz = xy, расположенной внутри цилиндра $x^2 + y^2 = b^2$.
- **3.5.** Вычислить площадь части поверхности, заданной уравнением $z=a^3-(x^2+y^2)^{3/2}$ и ограниченной плоскостью z=0 в случае a>0.
- **3.6.** Вычислить площадь части поверхности эллиптического параболоида $2z = x^2 + y^2$, которая отсекается плоскостью z = 1 и параболическим цилиндром $z = x^2$.
- **3.7.** Вычислить площадь части поверхности гиперболического параболоида $2z=x^2/a-y^2/b$, расположенной внутри цилиндра $x^2/a^2+y^2/b^2=1$ при условии $z\geq 0$.
 - 3.8. Вычислить площадь части поверхности катеноида

$$\begin{cases} x = a & \operatorname{ch}(u/a) \cos(v), \\ y = a & \operatorname{ch}(u/a) \sin(v), \\ z = u, \end{cases}$$

при условии $0 \le u \le a$, $0 \le v \le 2\pi$.

3.9. Вычислить площадь части поверхности псевдосферы (связанной с геометрией Лобачевского)

$$\begin{cases} x = a \sin(u)\cos(v), \\ y = a \sin(u)\sin(v), \\ z = a \left[\ln \operatorname{tg}(u/2) + \cos(u)\right], \end{cases}$$

в случае a=1 при условии $0 < u \le \pi/2, \quad 0 \le v \le 2\pi.$

4. Тройные интегралы

Тройной интеграл от непрерывной функции f(x,y,z) по ограниченной и измеримой по Жордану области G, как и двойной интеграл, вычисляют сведением к повторным интегралам. Если область G ограничена и определяется неравенствами

$$x_1 \le x \le x_2, \qquad y_1(x) \le y \le y_2(x), \qquad z_1(x,y) \le z \le z_2(x,y),$$

то тройной интеграл может быть вычислен по формуле

$$\iiint\limits_{G} f(x,y,z) \, dx dy dz = \int\limits_{x_{1}}^{x_{2}} dx \int\limits_{y_{1}(x)}^{y_{2}(x)} dy \int\limits_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) \, dz.$$

При этом справедливы утверждения, аналогичные утверждению $I_1 = I_2$ в разделе 1 относительно сведения кратного интеграла к повторному. Их явные формулировки можно найти в литературе, приведенной в конце практикума.

Иногда удобно также применить формулу

$$\iiint\limits_{G} f(x,y,z)\,dxdydz = \iint\limits_{D} dxdy \int\limits_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z)\,dz,$$

которая проиллюстрирована на рис. (9).

Пример 10. Вычислить интеграл

$$\iiint_G \frac{x+y}{a^2+z^2} \, dx \, dy \, dz,$$

если G ограничена плоскостями x=0, y=0, x+y+z=a, x+y-z=a (см. рис. (10)).

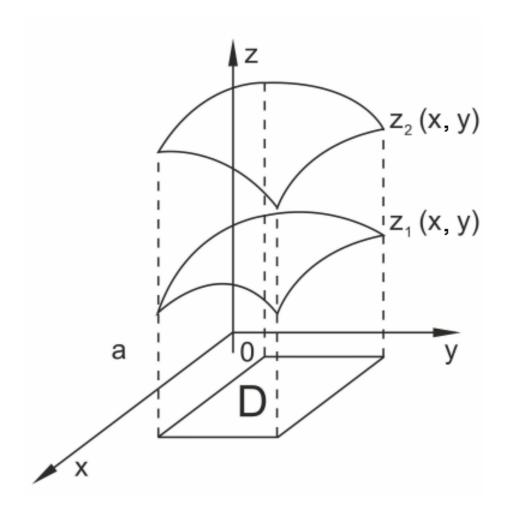


Рис. 9. Геометрическая интерпретация вычисления тройного интеграла

$$\iiint_{G} \frac{x+y}{a^{2}+z^{2}} dx dy dz = \iint_{D} dx dy \int_{-a+x+y}^{a-x-y} \frac{x+y}{a^{2}+z^{2}} dz =$$

$$= \iint_{D} \frac{x+y}{a} \operatorname{arctg} \frac{z}{a} \Big|_{x+y-a}^{a-x-y} dx dy =$$

$$= \frac{2}{a} \iint_{D} (x+y) \operatorname{arctg} \left(1 - \frac{x+y}{a}\right) dx dy =$$

$$= \frac{2}{a} \int_{0}^{a} dx \int_{0}^{a-x} (x+y) \operatorname{arctg} \left(1 - \frac{x+y}{a}\right) dy.$$

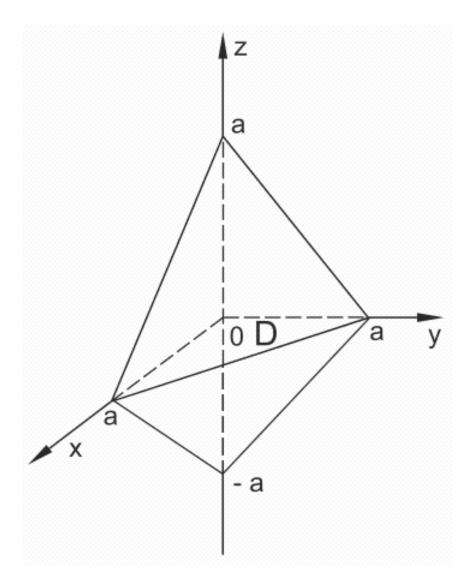


Рис. 10. Область интегрирования G из примера 10

$$2 \int_{0}^{a-x} (x+y) \operatorname{arctg}\left(1 - \frac{x+y}{a}\right) dy = \int_{x}^{a} 2t \operatorname{arctg}\left(1 - \frac{t}{a}\right) dt =$$

$$x + y = t, \ dy = dt$$

$$= t^{2} \operatorname{arctg}\left(1 - \frac{t}{a}\right) \Big|_{x}^{a} + \int_{x}^{a} \frac{at^{2}}{a^{2} + (a-t)^{2}} dt =$$

$$= -x^{2} \operatorname{arctg}\left(1 - \frac{x}{a}\right) + a(a-x) - a^{2} \ln\left(1 + \left(\frac{a-x}{a}\right)^{2}\right),$$

$$\int_{0}^{a} \left[(a-x) - \frac{x^{2}}{a} \arctan\left(1 - \frac{x}{a}\right) - a \ln\left(1 + \left(\frac{a-x}{a}\right)^{2}\right) \right] dx =$$

$$= a \int_{0}^{1} \left[at - a(1-t)^{2} \arctan\left(1 + t^{2}\right) \right] dt =$$

$$= a^{2} \left[\frac{1}{2} + \frac{(1-t)^{3}}{3} \arctan t \right]_{0}^{1} - \int_{0}^{1} \frac{(1-t)^{3}}{3(1+t^{2})} dx -$$

$$-t \ln\left(1 + t^{2}\right) \Big|_{0}^{1} + \int_{0}^{1} \frac{2t^{2}}{1+t^{2}} dt \Big] =$$

$$= a^{2} \left[\frac{1}{2} + \frac{1}{3} \int_{0}^{1} (t+3) dt - \ln 2 + \frac{1}{3} \int_{0}^{1} \frac{2t dt}{1+t^{2}} - \frac{4}{3} \int_{0}^{1} \frac{dt}{1+t^{2}} \right] =$$

$$= \frac{a^{2}}{3} [5 - 2 \ln 2 - \pi].$$

Пример 11. Вычислить

$$\iiint_G \frac{dx \, dy \, dz}{2a+z} \,,$$

где область G получается при пересечении двух круговых цилиндров одинакового радиуса (см. рис. (11)):

$$G = \{(x, y, z) : x^2 + z^2 \le a^2, \ y^2 + z^2 \le a^2\}.$$

Представим G в виде

$$G = \{(x, y, z) : -a \le z \le a, (x, y) \in D\},\$$

где D есть квадрат со сторонами длины $2\sqrt{a^2-z^2}$:

$$D = \{(x, y) : |x| \le \sqrt{a^2 - z^2}, \ |y| \le \sqrt{a^2 - z^2}\}.$$

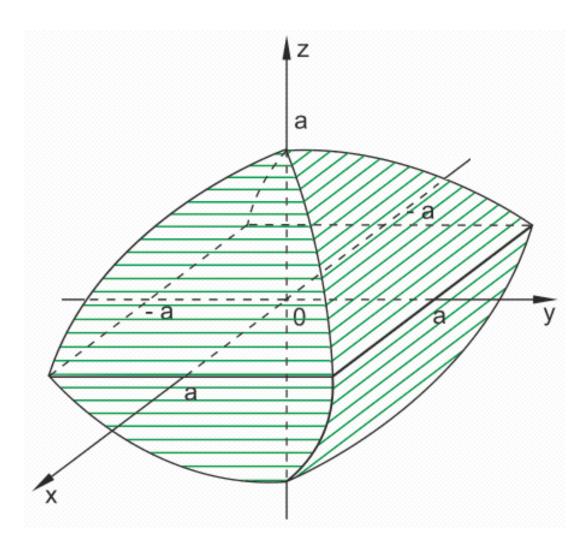


Рис. 11. Область интегрирования из примера 11

Тогда

$$\iiint\limits_{G} \frac{dx\,dy\,dz}{2a+z} = \int\limits_{-a}^{a} \frac{dz}{2a+z} \iint\limits_{D} dx\,dy.$$

Величина $\iint\limits_{D} dxdy$ есть площадь квадрата при данном z.

$$\int_{-a}^{a} \frac{dz}{2a+z} \iint_{D} dx \, dy = 4 \int_{-a}^{a} \frac{a^{2}-z^{2}}{2a+z} \, dz =$$

$$= 4 \int_{-a}^{a} (2a-z) \, dz - 12a^{2} \int_{-a}^{a} \frac{dz}{2a+z} = 4a^{2}(4-3\ln 3).$$

Задачи

- **4.1.** Расставить пределы интегрирования в тройном интеграле $\iiint_G f(x,y,z)\,dxdydz$, если область G ограничена эллипсоидом $\frac{x^2}{4}+y^2+\frac{z^2}{9}=1$.
- **4.2.** Расставить пределы интегрирования в тройном интеграле $\iiint_G f(x,y,z)\,dxdydz$, если область G ограничена плоскостями $y=0,\,y=x,\,z=1,\,z=x$.
- **4.3.** Расставить пределы интегрирования в тройном интеграле $\iiint_G f(x,y,z) \, dx dy dz$, если область G ограничена эллиптическим параболоидом $z=x^2+4y^2$ и плоскостью z=3.
- 4.4. Вычислить тройной интеграл $\iiint_G z \, dx dy dz$, если об-

ласть G задана неравенствами $0 \le y \le \frac{1}{3}, \ y \le x \le 3y,$ $0 \le z \le \sqrt{1-x^2-y^2}.$

4.5. Вычислить тройной интеграл
$$\iiint_G \frac{1}{(x+2y+3z+1)^5} \, dx dy dz, \ \text{если область } G \ \text{ограничена плоскостями } x=0, \, y=0, \, z=0$$
 и $x+2y+3z=1$.

- **4.6.** Вычислить тройной интеграл $\iiint_G (x^2 + y^3) \, dx dy dz$, если область G ограничена поверхностями z = xy, x + y = 1, z = 0.
- **4.7.** Вычислить тройной интеграл $\iiint_G \frac{xy}{z^3} \, dx dy dz$, если область G ограничена конусом $z^2 = \frac{x^2}{4} + \frac{y^2}{9}$ и плоскостями $z = 1, \, x = 0, \, y = 0.$
- **4.8.** Вычислить тройной интеграл $\iiint_G (x^2+3x) \, dx dy dz$, если область G ограничена конусом $x^2=\frac{y^2+z^2}{4}$ и плоскостью x=1.

5. Замена переменных в тройном интеграле

Пусть ограниченная замкнутая область G' пространства O'uvw взаимно однозначно отображается на область G пространства Oxyz с помощью непрерывно дифференцируемых функций $x=x(u,v,w),\ y=y(u,v,w),\ z=z(u,v,w)$ и якобиан J в области G' не обращается в нуль

$$J = \begin{vmatrix} x'_u & x'_v & x'_w \\ y'_u & y'_v & y'_w \\ z'_u & z'_v & z'_w \end{vmatrix} \neq 0.$$

Тогда справедлива формула

$$\iiint\limits_G f(x,y,z)\,dxdydz = \\ \iiint\limits_{G'} f(x(u,v,w),y(u,v,w),z(u,v,w))|J|\,dudvdw.$$

Пример 12. Вычислить тройной интеграл

$$\iiint_{G} \frac{y}{x^3} \, dx dy dz,$$

если область G ограничена поверхностями $z = ax^2$, $z = bx^2$, $x \ge 0$ (0 < a < b), $z = \alpha y$, $z = \beta y$ (0 < $\alpha < \beta$), z = c (c > 0).

Введем новые переменные $u=\frac{z}{x^2},\,v=\frac{z}{y},\,w=z.$ Тогда область G' будет являться прямоугольным параллелепипедом:

$$G' = \{(u, v, w) : a \le u \le b, \ \alpha \le v \le \beta, \ 0 \le w \le c\}.$$

Вычислим значение якобиана. Для этого выразим старые переменные через новые: $x=\sqrt{\frac{w}{u}},\ y=\frac{w}{v},\ z=w.$ Тогда якобиан примет вид

$$J = \begin{vmatrix} -\frac{w^{1/2}}{2u^{3/2}} & 0 & \frac{1}{2u^{1/2}w^{1/2}} \\ 0 & -\frac{w}{v^2} & \frac{1}{v} \\ 0 & 0 & 1 \end{vmatrix} = \frac{w^{3/2}}{2u^{3/2}v^2}.$$

Поэтому

$$\iiint_{G} \frac{y}{x^{3}} dx dy dz = \iiint_{G'} \frac{w}{v} \frac{u^{3/2}}{w^{3/2}} \frac{w^{3/2}}{2u^{3/2}v^{2}} du dv dw = \frac{1}{2} \int_{a}^{b} 1 du \int_{\alpha}^{\beta} \frac{1}{v^{3}} dv \int_{0}^{c} w dw = \frac{1}{8} (b - a) \left(\frac{1}{\alpha^{2}} - \frac{1}{\beta^{2}}\right) c^{2}.$$

5.1. Цилиндрические координаты

$$x = r\cos\varphi, \qquad y = r\sin\varphi, \qquad z = h.$$

Здесь $r \geq 0, \, \varphi \in [0,2\pi]$. Якобиан отображения $(x,y,z) \longrightarrow (r,\varphi,h)$ равен r.

Цилиндрические координаты удобно применять, когда область интегрирования содержит следующие поверхности:

- 1) цилиндр $x^2 + y^2 = R^2$, где R радиус цилиндра (уравнение цилиндра в новых координатах r = R);
- 2) конус $z^2 = x^2 + y^2$ (уравнение конуса в новых координатах |z| = r);
- 3) параболоид вращения $z = x^2 + y^2$ (его уравнение в новых координатах $z = r^2$);
- а также в других случаях, когда подынтегральная функция зависит от выражения $x^2 + y^2$.

Пример 13. Вычислить интеграл

$$\iiint\limits_G z(x^2+y^2)\,dx\,dy\,dz,$$

где область G ограничена поверхностями

$$x^2 + y^2 = az$$
, $(x^2 + y^2)^2 = az^3$.

Поскольку обе поверхности являются поверхностями вращения, то сделаем чертеж меридионального сечения, см. рис. (12).

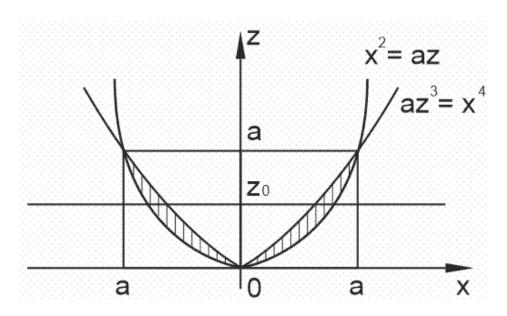


Рис. 12. Сечение области G из примера 13 плоскостью OXZ

Линией пересечения заданных поверхностей является окружность $z=a,\ x^2+y^2=a^2.$ Ортогональной проекцией D на ось OZ является интервал (0,a), а на плоскость OXY — круг $x^2+y^2< a^2.$ Горизонтальная плоскость $z=z_0,\ z_0\subset (0,a)$ пересекает D по кольцу с центром на оси OZ внутренним радиусом $\sqrt[4]{az_0^3}$ и внешним $\sqrt{az_0}$. Следовательно,

$$D = \{(x, y, z) : 0 < z < a, \ az^3 < (x^2 + y^2)^2 < a^2z^2\}$$

И

$$D = \left\{ (x, y, z) : x^2 + y^2 < a^2, \ \frac{x^2 + y^2}{a} < z < \left(\frac{(x^2 + y^2)^2}{a} \right)^{1/3} \right\},$$

откуда получим, что

$$\iiint_D z(x^2 + y^2) \, dx \, dy \, dz = \int_0^a z \, dz \, \iint_{D_z} (x^2 + y^2) \, dx \, dy,$$

где
$$D_z = \{(x,y) : az^3 < (x^2 + y^2)^2 < a^2z^2\},$$

$$\iiint_{D} z(x^{2} + y^{2}) dxdydz = \iint_{D_{0}} (x^{2} + y^{2}) dxdy \int_{(x^{2} + y^{2})/a}^{(x^{2} + y^{2})/a} z dz,$$

где
$$D_0 = \{(x, y) : x^2 + y^2 < a^2\}.$$

Переходя к цилиндрическим координатам, выразим

$$\iiint_{D} z(x^{2} + y^{2}) dx dy dz = \int_{0}^{a} z dz \int_{0}^{2\pi} d\varphi \int_{4\sqrt{az^{3}}}^{\sqrt{az}} r^{3} dr$$

ИЛИ

$$\iiint_D z(x^2 + y^2) \, dx \, dy \, dz = \int_0^{2\pi} d\varphi \int_0^a r^3 dr \int_{r^2/a}^{(r^4/a)^{1/3}} z \, dz.$$

Окончательно получаем

$$\iiint_D z(x^2 + y^2) \, dx \, dy \, dz = \frac{1}{4} \cdot 2\pi \int_0^a z(a^2 z^2 - az^3) \, dz =$$

$$= \frac{\pi}{2} \cdot a^6 \cdot \left(\frac{1}{4} - \frac{1}{5}\right) = \frac{\pi a^6}{40}$$

ИЛИ

$$\iiint_D z(x^2 + y^2) \, dx \, dy \, dz = \frac{1}{2} \cdot 2\pi \int_0^a r^3 \, \left(\frac{r^{8/3}}{a^{2/3}} - \frac{r^4}{a^2}\right) dr =$$
$$= \pi \cdot a^6 \cdot \left(\frac{3}{20} - \frac{1}{8}\right) = \frac{\pi a^6}{40}.$$

5.2. Сферические координаты

 $C \phi$ ерическими координатами точки $M(x,y,z),\ M\in\mathbb{R}^3$ называется тройка чисел $(r,\varphi,\theta),$ связанных с декартовыми координатами формулами

$$x = r \cos \varphi \cos \theta,$$
 $y = r \sin \varphi \cos \theta,$ $z = r \sin \theta.$

Здесь

$$r \ge 0, \qquad 0 \le \varphi \le 2\pi, \qquad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}.$$

Якобиан отображения $(x,y,z) \longrightarrow (r,\varphi,h)$: $J = r^2 \cos \theta$. Интеграл преобразуется по правилу

$$\iiint\limits_{G} f(x,y,z) \, dx \, dy \, dz =$$

$$= \iiint\limits_{G'} f(r\cos\varphi\cos\theta, \ r\sin\varphi\cos\theta, \ r\sin\theta) \cdot r^2\cos\theta \, dr \, d\varphi \, d\theta.$$

Обобщенными сферическими координатами точки $M(x,y,z)\subset \mathbb{R}^3$ называется тройка чисел (r,φ,θ) , которые связаны с декартовыми координатами формулами

$$x=a\,r\cos^{lpha}\varphi\cos^{eta} heta, \qquad y=b\,r\sin^{lpha}\varphi\cos^{eta} heta, \qquad z=c\,r\sin^{eta} heta,$$
где

 $r\geq 0, \qquad 0\leq \varphi\leq 2\pi, \qquad -\frac{\pi}{2}\leq \theta\leq \frac{\pi}{2}$ или удовлетворяют другим условиям в зависимости от α и β

или удовлетворяют другим условиям в зависимости от α и β и области G. Якобиан при переходе к обобщенным сферическим координатам имеет вид

$$J = abc \,\alpha\beta \,r^2 \cos^{\alpha-1}\varphi \sin^{\alpha-1}\varphi \cos^{2\beta-1}\theta \sin^{\beta-1}\theta.$$

Сферические координаты удобно использовать, когда область интегрирования содержит шар $x^2 + y^2 + z^2 = R^2$ целиком или частично или если подынтегральная функция зависит от выражения $x^2 + y^2 + z^2$. Обобщенные сферические

координаты применяются, например, когда область интегрирования содержит эллипсоид

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = R^2.$$

Пример 14. Вычислить

$$\iiint_G z \, dx dy dz,$$

где G область лежит в первом октанте (x>0,y>0,z>0) и ограничена поверхностью

$$\left(\frac{x}{a} + \frac{y}{b} + \frac{z}{c}\right)^2 = \frac{x}{h} - \frac{y}{k}.$$

Положим $\alpha = \beta = 2$ и

$$\begin{cases} x = ar \cos^2 \varphi \cos^2 \theta, \\ y = br \sin^2 \varphi \cos^2 \theta, \\ z = cr \sin^2 \theta. \end{cases}$$

В переменных (r, φ, θ) поверхность примет вид

$$r = \left(\frac{a}{h}\cos^2\varphi - \frac{b}{k}\sin^2\varphi\right)\cos^2\theta, \qquad \theta \in [0, \pi/2], \qquad \varphi \in [0, \pi/2].$$

Угол φ должен удовлетворять еще условию

$$\frac{a}{h}\cos^2\varphi - \frac{b}{k}\sin^2\varphi \ge 0,$$

следовательно, $\varphi \in [0, \varphi_0]$, где φ_0 удовлетворяет условию

$$tg^2 \varphi_0 = \frac{ak}{bh}$$
 или $\sin^2 \varphi_0 = \frac{ak}{ak + bh}$

и $\varphi_0 \in (0, \pi/2)$.

Область G отображается в G':

$$G' = \left\{ (r, \varphi, \theta) : 0 \le \theta \le \pi/2, \ 0 \le \varphi \le \varphi_0, \ 0 \le r \le r(\varphi, \theta) \right\},$$

$$r(\varphi, \theta) = \left(\frac{a}{h} \cos^2 \varphi - \frac{b}{k} \sin^2 \varphi \right) \cos^2 \theta \text{ и, следовательно},$$

$$\iiint_G z \, dx \, dy \, dz =$$

$$= \int_0^{\pi/2} d\theta \int_0^{\varphi_0} d\varphi \int_0^{r(\varphi, \theta)} cr \sin^2 \theta \, 4abc \, r^2 \cos \varphi \sin \varphi \cos^3 \theta \sin \theta \, dr =$$

$$= 4abc^2 \int_0^{\pi/2} \cos^3 \theta \sin^3 \theta \, d\theta \int_0^{\varphi_0} \cos \varphi \sin \varphi \, d\varphi \int_0^{r(\varphi, \theta)} r^3 \, dr =$$

$$= abc^2 \int_0^{\pi/2} \cos^{11} \theta \sin^3 \theta \, d\theta \int_0^{\varphi_0} \left(\frac{a}{h} \cos^2 \varphi - \frac{b}{k} \sin^2 \varphi \right)^4 \cos \varphi \sin \varphi \, d\varphi =$$

$$= \frac{abc^2}{84} \frac{1}{2} \int_0^{\varphi_0} \left(\frac{a}{h} - \left(\frac{a}{h} + \frac{b}{k} \right) \sin^2 \varphi \right)^4 d(\sin^2 \varphi) =$$

$$= \frac{abc^2}{840} \left(\frac{a}{h} + \frac{b}{k} \right)^{-1} \left[\frac{a}{h} - \left(\frac{a}{h} + \frac{b}{k} \right) \sin^2 \varphi \right]^5 \Big|_{\varphi_0}^0 =$$

$$= \frac{a^6 b \, c^2 k}{840 \, (ak + bh) \, h^4}.$$

Задачи

5.1. В тройном интеграле $\iiint_G f(x,y,z) \, dx dy dz$, где G ограничивается поверхностями $x+z=2, \, x+z=-3, \, x-z=5, \, x-z=1, \, y=\sqrt{x^2+z^2},$ произвести такую замену переменных, чтобы две из трех новых переменных изменялись на отрезке постоянной длины.

- **5.2.** Доказать непосредственным вычислением, что при введении обобщенных сферических координат $x = ar\cos^{\alpha}\varphi\cos^{\beta}\theta, \ y = br\sin^{\alpha}\varphi\cos^{\beta}\theta, \ z = cr\sin^{\beta}\theta,$ якобиан J отображения $(x,y,z) \to (r,\varphi,\theta)$ равен $abc\alpha\beta r^2\cos^{\alpha-1}\varphi\sin^{\alpha-1}\varphi\sin^{\beta-1}\theta\cos^{2\beta-1}\theta.$
- **5.3.** Вычислить тройной интеграл $\iiint_G \sqrt{4x^2 + y^2} \, dx dy dz$, если область G ограничена поверхностями $4x^2 + y^2 = 1$, z = 1, $z = 3 + 4x^2 + y^2$.
- **5.4.** Вычислить тройной интеграл $\iiint_G x^2y^2z^2\,dxdydz$, если область G ограничена поверхностями $z=\sqrt{x^2+9y^2}$, z=2.
- **5.5.** Переходя к цилиндрическим координатам, вычислить интеграл $\iiint_G z \sqrt{x^2 + y^2} \, dx dy dz$, если область G ограничена
- поверхностями $z=0, z=1, x^2=2y-y^2.$ **5.6.** Вычислить тройной интеграл $\iiint \frac{x^2}{\sqrt{x^2+y^2+z^2}} \, dx dy dz, \text{ если область } G \text{ ограничена}$

поверхностями $x^2 + y^2 + z^2 = R^2$, $x^2 + y^2 = z^2$ ($z \ge 0$).

5.7. Вычислить тройной интеграл $\iiint_G \frac{1}{1+(x^2+y^2+z^2)^{3/2}} \, dx dy dz, \text{ если область } G \text{ огра-$

ничена сферой $x^2 + y^2 + z^2 = R^2$.

5.8. Вычислить тройной интеграл $\iiint_G \sqrt{x^2 + y^2} \, dx dy dz$, если область G ограничена сферой $x^2 + y^2 + z^2 = 2z$.

Литература

- 1. Тер-Крикоров, А. М. Курс математического анализа / А. М. Тер-Крикоров, М. И. Шабунин. М. : Наука, 1988.
- 2. Фихтенгольц, Г. М. Курс дифференциального и интегрального исчисления / Г. М. Фихтенгольц. М. : Наука, 1969.
- 3. Кудрявцев, Л. Д. Математический анализ / Л. Д. Кудрявцев. М. : Высшая школа, 1981.
- 4. Демидович, Б. П. Сборник задач и упражнений по математическому анализу / Б. П. Демидович. М. : Наука, 1977.
- 5. Данко, П. Е. Высшая математика в упражнениях / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. М. : Высшая школа, 1980.
- 6. Егоров, В. И. Определенный и кратные интегралы. Элементы теории поля / В. И. Егоров, А. Ф. Салимова. М. : Физматлит, 2004.
- 7. Гаврилов, В. Р. Кратные и криволинейные интегралы. Элементы теории поля / В. Р. Гаврилов, Е. Е. Иванова, В. Д. Морозова. М. : Изд-во МГТУ им. Н. Э. Баумана, 2003.
- 8. Виноградова, И. А. Задачи и упражнения по математическому анализу / И. А. Виноградова, С. Н. Олехник, В. А. Садовничий. М. : Высшая школа, 2000.
- 9. Кратные интегралы (задачи и упражнения): метод. указания / сост. О. М. Карпилова. Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2008.

- 10. Гоголинская, Р. А. Практикум по высшей математике для студентов технических специальностей. Часть V: Кратные и криволинейные интегралы / Р. А. Гоголинская, В. Т. Джура, Е. В. Кузьмина, И. В. Лизунова, Л. Т. Мороз. Брест : Брестский гос. техн. ун-т, 2012.
- 11. Семерикова, Н. П. Кратные интегралы / Н. П. Семерикова, С. А. Лапинова. Нижний Новгород: Нижегородский госуниверситет, 2012.
- 12. Богомолова, Е. В. Кратные интегралы и их приложения / Е. В. Богомолова. Дубна : Государственный университет «Дубна», 2019.

Для заметок

Учебное издание

Глазков Дмитрий Владимирович Кащенко Александра Андреевна Литвинов Владимир Викторович

Практикум по кратным интегралам

Практикум

Редактор, корректор Л. Н. Селиванова Компьютерный набор, верстка Д. В. Глазков, А. А. Кащенко, В. В. Литвинов

Подписано в печать 20.09.2021. Формат $60x84\ 1/16$. Усл. печ. л. 2,6. Уч.-изд. л. 2,0. Тираж 5 экз. Заказ

Оригинал-макет подготовлен в редакционно-издательском отделе ЯрГУ.

Ярославский государственный университет им. П. Г. Демидова. 150003, Ярославль, ул. Советская, 14.